Book review: “Metamath: the quest for Omega” by G. Chaitin

October 28th, 2004 at 12:12 pm

I can half-jokingly refer to Gregory Chaitin as my colleague. Actually, he
*is* my colleague – we both work for IBM. We’re even in the same
division of IBM – research. But here the similarity ends. I’m one
of those thousands of people in research who just do their work to
bring profits to big blue – develop and maintain software that is
used throughout the company, and is sold to external customers.
Chaitin is one of those whom IBM keeps just to have his name in its
ranks !

And for a reason ! Chaitin is one of the pioneers of modern mathematics.
His results may be as famous in half a century as Godel’s and Turing’s
results are famous now, and IBM will always gladly brag that he did
his research in its Watson center in New York.

I mentioned Godel and Turing for a purpose. Chaitin’s research involves
some of both, using Turing’s ideas (as long as others’) to prove results
that have a very high correlation with what Godel is most known for -
incompletness of formal axiomatic systems.

In the book, Chaitin strolls the readers through a lot of interesting
stuff – beginning with prime numbers and various proofs of their
infinity, through countable vs. uncountable sets, through doubts of
the “reality” of real numbers, proofs that most real numbers are
transcendental, Turing’s halting problem, algorithmic complexity,
the concepts of “elegant” and self-delimiting programs and up to
a philosophical discussion of real and random numbers, touching the
various problems researchers face with the slippery concept of infinity.

The philosophical discussions are, in fact very interesting. I’ve never
faced the topic of “realness” of real number. The question is – if we
can never calculate them fully, are they really real ? Chaitin presents
the difference between meaningful reals and random reals. Most reals
are meaningless, but some reals are full of meaning, though they’re
completely random and un-calculable – like his Omega number (the probability
that a random program halts).

There are a lot of beautiful (and I’d even admit “exciting”) mathematical
proofs in the book. The author told about his discontent with Godel’s
proof of the incompleteness theorem – it’s too long and complicated. The
proofs presented in the book are mostly short – easy to understand and
feel “natural”.

The only bad side is the writing style. I’m not closed in on my feelings
about it, but Chaitin, it seems to me, is not a very good author. He’s
a brilliant researcher and writes about exciting things, but his writing
style is lacking. Maybe it’s just because I recently finished GEB, and
Hofstadter’s writing is a true piece of art, so Chaitin loses in comparison.

By the way, this is a free ebook you can download from Chaitin’s website !

Related posts:

  1. a quest for difference
  2. Book review: “Dragons of Eden” by Carl Sagan
  3. Book review: “A Certain Ambiguity: A mathematical novel” by G. Suri and H. Bal
  4. Book review: “Artificial Life” by Steven Levy
  5. Book review: “War of the worlds” by H.G. Wells

Comments are closed.